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The Metric Dimension problem

Given G (V ,E ) its metric dimension, β(G ) is the cardinality of the
smallest L ⊂ V s.t. ∀x , y ∈ V , ∃z ∈ L with dG (x , z) 6= dG (y , z).
The set L is called a resolving set.

Harary, Melter, (1976), Slater, (1974)
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Examples MD



Complexity of Metric Dimension

• NPC for general graphs, Garey,Johnson (1979)

• P for trees, Khuller,Raghavachari,Rosenfeld (1996)

• There is a 2 log n-approximation for general graphs, Khuller*

• If P 6= NP, there is not a o(2 log n)-approximation,
Beliova,Eberhard,Erlebach,Hall,Hoffmann,Mihálak,Ram (2006)

• ∀ε > 0, There is no (1− ε) log n for general graphs, unless
NP⊆ DTIME (nlog log n), Hauptmann,Scmhied,Viehmann (2012)

• If P 6= NP, not o(log n)-approximation for general graphs with
maximum degree 3, Hartung,Nichterlein (2013)



Characterizations of MD for particular graphs

• β(G ) = 1 iff G is a path.

• If β(G ) = 2 ⇒ G does not contain K3,3 or K5

Khuller* (96).

• β(G ) = n − 1 iff G is a Ks,t or a split graph
Chartrand, Eroh, Ollerman (2000)

• β(G ) = n − 1 iff G is a n-clique.

• If G ha diameter D, n ≤ Dβ(G)−1 + β(G ).



Complexity of Metric Dimension-2

• NPC for bounded degree planar graphs
D́ıaz, Pottonen, Serna, Van Leeuwen, (2012)

• NPC for Gabriel graphs Hoffman, Wanke (2012)

• NPC for weighted MD for a variety of graphs
Epstein, Levin, Woeginger (2012)

• W[2]-complete for general graphs, Hartung, Nichterlein (2013)

• There is a poly-time algorithm for MD on outer-planar graphs
D́ıaz*



Why MD is difficult? 1

• Strongly non-local. A vertex in L can resolve vertices very far
away.

• Non-closed under vertex addition, subtraction, or subdivision.
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Baker’s Technique

Outerplanar: planar with
all vertices in the outer
face

Baker’s Technique (1944): to obtain FPTAS for NP planar
problems: dual bounded tree width decomposition +DP.
The technique aims to produce FPTAS for problems that are
known to be NPH on planar graphs. They decompose the planar
realization into k-outerplanar, get an exact solution for each
k-outerplanar slice and combine them.
Among the problems approximated: vertex cover, maximum
independent set, minimum dominating set, minimum feedback
vertex sets.



Min. feedback vertex set

Baker’s Technique (1944): to obtain FPTAS for NP planar
problems: dual bounded tree width decomposition +DP.
The technique aims to produce FPTAS for problems that are
known to be NPH on planar graphs. They decompose the planar
realization into k-outerplanar, get an exact solution for each
k-outerplanar slice and combine them.
Among the problems approximated: vertex cover, maximum
independent set, minimum dominating set, minimum feedback
vertex sets.



Why MD is difficult?

3 • MD does not have the bidimensionality behavior.
A problem is bidimensional if it does not increase when performing
certain operations as contraction of edges and the solution value
for the problem on a n × n-grid is Ω(n2) Demaine, Fomin,
Hajiaghayi, Thilikos (2005)

Bidimensionality has been used as a tool to obtain sub-exponential
time parameterized algorithms for problems on H-minor free
graphs and to find PTAS for hard bidimensional problems on
planar graphs. Demaine, Hajiaghayi (2005).

Examples: feedback vertex set, vertex cover, minimum maximal
matching, face cover, dominating set, or edge dominating set.



Algorithm for outerplanar G

Our approach extended dual (unbounded) tree +DP + New Data
structures.

1. Charcterize the resolving sets by giving iff requirements for a
v to be in L

2. Define a T where the vertices are the vertex and cut faces of
G and the edges in T correspond to inner edges and bridges
(separators) of G . Notice as size of an inner face could be
arbitrarily large, the width of T could be arbitrary.
Explor T in bottom-up fashion using two data structures:

2.1 Boundary conditions
2.2 Configurations



Characterization of resolving sets

Given G and L, let
g(v , L) = {u ∈ N (() v) | d(z , u) = d(z , v) + 1, ∀z ∈ L}
R1. If ∀v ∈ V (G ), |g(v , L)| ≤ 1⇒ L resolves G .

C is a cycle implied by z1, z2 ∈ L,
x , y ∈ V (G ) if z1, z2 do not resolve
x , y , and (z1 ; x) ∩ (z2 ; y) = ∅
R2. If F is contained in an implied
cycle C by z1, z2, x , y and L has two
representatives in F there is a third
representative in C s.t. resolves x , y .
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Theorem. G connected outer planar with |V | > 2, then L ⊂ V is
resolving iff L satisfies R1 and R2



Algorithm for outerplanar

Define the extended dual tree for the G outer-planar.
The extended dual tree contains the regular dual tree + cut
vertices + trees in original graph.
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Algorithm for outerplanar

3.- Define use bottom up DP The algorithm will build a small set
of members in L satisfying the previous requirements

When traversing the tree we need to combine the information of
the children of the vertex and send the information to the parent.
It also may expect certain landmarks present in the umprocesed
part of the tree. We also need to combine properly the information
of the verte and to satisfy R1 and R2.
Given a vertex v ∈ V (T ), this can be done using special DS:
boundary conditions to track the effects of the already placed
resolving vertices, foresee the placement of new resolving sets in
the unexplored part.
configurations control the process of combining the boundary
conditions on the edges between v and its sons, into boundary
conditions in the edge between v and its father. It dependa of
what v represents (face, vertex cut,end vertex)



Algorithm for outerplanar

Even the number of vertices in G represented by v ∈ V (T ) could
be unbounded, the total number of configurations is polynomial.

The algorithm works in O(n8) (plenty of room for possible
improvement)



Open problems on the complexity of MD

I Find if MD for
K -outerplanar
graphs is in P or
in NPC.

I If there are polynomial time algorithms for K -outerplanar it
could yield better approximations for MD on planar graphs.
Prove of disprove that MD is APX-hard for planar graphs.



Background on parametrized complexity

The Treewidth of G

Treewidth = 2
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Parametrized complexity: Classify the problems according to
their difficulty with respect an input parameter of the problem.
Downey, Fellows (1999)

P ⊆ FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆ XP

FPT is the class of problems solvable in time f (k)poly(n)

• k-vertex cover Given (G , k), does G have a VC ≤ k?
Time of k-VC = (kn + 1.2k). ∴ k-VC ∈ FPT.
• MD is W[2]-complete for general graphs. Hartung*(13)



Open problems for MD

Courcell’s Theorem Any problem definable by Monadic Second
Order Logic is FPT when parametrized by tree width and the
length of the formula.

So far, it seems to be difficult to formulate MD as an
MSOL-formula ⇒ Courcel’s Theorem does not apply.

I Prove mathematically that MD can not be expressed as an
MSOL formula.

I Show if MD ∈ P (or not) for bounded treewidth graphs.

I Study the parametrized complexity of MD on planar graphs.



Binomial Graphs G (n, p)

G ∈ G (n, p) if given n
vertices V (G ), each
possible edge e is
included independently
with probability
p = p(n).

Whp |E (G )| = p
(n
2

)
and the expected degree of a vertex: d = np.

Giant component threshold: pt = (1 + ε) 1n .

Connectivity threshold: pc = (1 + ε) log nn .



Expected β(G ) in G (n, p)

Bollobas, Mitsche, Pralat (2013)
Given G ∈ G (n, p), choose randomly the resolving set S ⊆ V and
bound Pr [∃u, v not separated by S ].

d = np

β

log5 n

Θ(n)

n1/2 log n

n1/3 log n

n1/4 log n

log n

log nΘ(1) logc n n1/5 n1/3n1/4 n1/2

?

n(1− ǫ)

Find E [β(G )] for Θ(1) < β(G ) < log5 n



Random t-regular Graphs G(n, t)

G ∈ G(n, t) if it is uniformly
sampled from the set of all
graphs with n vertices and
degree t. Assume t = Θ(1).

Let G ∈ G(n, t):

I For t ≥ 3 aas G is strongly connected Cooper (93).

I For t ≥ 3 aas G is Hamiltonian Robinson,Wormald (92,93),
Cooper, Frieze (94).

I For t ≥ 3 aas the diameter of G = logt−1 +o(log n) Bollobas,
Fernandez de la Vega (81)

I For t ≥ 3, G is an expander, i.e. ∃c > 1 s.t. ∀S ⊂ V (G ) with
1 ≤ |S | ≤ n

2 , N (S) ≥ c |S |.



Expected β(G ) for G(n, t)

D́ıaz, Mitsche, Pérez
Given G ∈ G(n, t), |V | = n and 2 < t = Θ(1), then whp
E [β(G )] = Θ(log n).

Given G ∈ G(n, t), v ∈ V (G ), let Si = {u ∈ V (G ) | dG (v , u) = i}
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(with 0 < α < 1)

S1(v) S2(v)S3(v) Si(v)

v

t

αin αi+1nt(t− 1)3

i = logt−1 n
2

t(t− 1)

Θ(
√
n)

t(t− 1)2

Given v ∈ V (G ), for any pair (u,w) ∈ V 2:
v does not separate u and w if u,w ∈ Si , and
v separates u and w if u ∈ Si & w ∈ Si+1 (or vice versa).



Expected β(G ) for G(n, t)

Therefore, Pr [v separates u&w ] ≥ 2αiαi+1, and
Pr [v does not separate u&v ] ≥ α2

i + α2
i+1,

where αi and αi+1 are constants between 0 and 1.
(1− αiαi+1)︸ ︷︷ ︸

α

≥ Pr [v separates u&w ] ≥ 2αiαi+1︸ ︷︷ ︸
α′

Upper Bound

Randomly choose a resolving L ⊂ V (G ) with |L| = C log n, for
large constant C > 0.

Then for a particular pair of vertices u,w
Pr [L does not separate u&w ] < αC log n ∼ o( 1

n2
) (union bound)

Let XC = be the number of pairs not separated by L,

E [XC ] < n2αC log n → 0⇒ Pr [XC > 0]→ 0



Expected β(G ) for G(n, t): Lower Bound

Randomly choose a resolving set L ⊂ V (G ) with |L| = c log n, for
small constant c > 0.

Pr [L does not separate u&w ] ≥ α′c log n ∼ ω( 1
n2

)

⇒ If Xc = number pairs not separated by L, then

E [Xc ] > n2α′
c log n →∞⇒ Pr [Xc > 0] = 1− o(1)

Therefore, β(G ) = Θ(log n) .

Ongoing work: the expected value of α and C .



Thank you.


